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This paper utilizes the saddlepoint approximation as an efficient tool to
estimate the portfolio credit loss distribution in the Vasicek model. Value-at-
risk (VaR), the risk measure chosen in the Basel I Accord for the evaluation
of capital requirement, can then be found by inverting the loss distribution.
The VaR contribution (VaRC), expected shortfall (ES) and ES contribution
(ESC) can all be calculated accurately. Saddlepoint approximation is well
known to provide good approximations to very small tail probabilities,
which makes it a very suitable technique in the context of portfolio credit
loss. The portfolio credit model we employ is the Vasicek one-factor model,
which has an analytical solution if the portfolio is well diversified. The
Vasicek asymptotic formula fails, however, when the portfolio is dominated
by a few loans much larger than the rest. We show that saddlepoint
approximation is able to handle such exposure concentration. We also point
out that the saddlepoint approximation technique can be readily applied
to more general Bernoulli mixture models (possibly multi-factor). It can
further handle portfolios with random loss given default (LGD).
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1 INTRODUCTION

The integral issues in portfolio credit loss modeling are the determination of the
value-at-risk (VaR) and the VaR contribution (VaRC). Value-at-risk is the risk
measure chosen in the Basel II Accord (Basel Committee on Bank Supervision
2005) for the evaluation of capital requirement. The VaRC measures how much
each obligor in a portfolio contributes to the total VaR. It is equally as important
as VaR because it is necessary for loan pricing and it can provide limits on
large credit exposures. It may also be useful for profitability assessment, asset
allocation and portfolio optimization. There are several forms of risk contribution
in the literature and we adopt the marginal contribution given by Gourieroux et al
(2000), which is the sensitivity of the risk to an infinitesimal fractional change in
exposure.

The Vasicek (2002) portfolio credit loss model is among the most popular
models quantifying portfolio credit risk. In particular, it is the basis of the Basel II
internal-ratings-based (IRB) approach. The Vasicek model is a one-period default-
mode model, ie, loss only occurs when an obligor defaults in a fixed time horizon.
Under certain homogeneity conditions, the Vasicek one-factor model leads to very
simple analytic asymptotic approximation of loss distribution and the VaR. The
approximation works very well when the portfolio is large and there is no exposure
concentration present, ie, the portfolio is not dominated by a few loans. However,
the Vasicek one-factor model cannot detect exposure concentration when it is
inherent in the portfolio as it then tends to underestimate risk.

This paper utilizes the saddlepoint approximation as an efficient tool to estimate
portfolio credit loss distribution. The saddlepoint approximation method is well
known to provide good approximations to very small tail probabilities, which
makes it a very suitable technique in the context of portfolio credit loss. The use
of saddlepoint approximation in portfolio credit loss was pioneered in a series
of articles by Martin er al (2001a, b). Gordy (2002) showed that saddlepoint
approximation is fast and robust when applied to CreditRisk™. The approach
in this paper is different in that (i) we employ the saddlepoint approximation
in the Vasicek model and (ii) we apply the saddlepoint approximation to the
conditional moment generating function (MGF) of portfolio loss L rather than
to the unconditional MGF. We show that this change in implementation of the
saddlepoint approximation leads to very accurate results on the portfolio loss
distribution, the VaR and VaRC, even for small portfolios and portfolios with
exposure concentration. In addition to the VaR and VaRC, we also give the
saddlepoint approximations for the Expected Shortfall (ES) and ES contribution
(ESC).

The rest of the article is organized as follows. In Section 2 we introduce the
popular risk measures and risk contributions and we review the Vasicek one-
factor model. Section 3 gives a brief introduction to saddlepoint approximation
and Section 4 describes how it can be used in the context of portfolio credit loss
modeling. Numerical results are presented in Section 5. We mainly work with the
Vasicek one-factor model, but also include an example of a Gaussian multi-factor
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model. Section 6 extends the use of the saddlepoint approximation to more general
situations. Conclusions are given in Section 7.

2 PORTFOLIO CREDIT LOSS MODELING
2.1 Risk measures and risk contributions

Consider a portfolio consisting of n obligors. Any obligor i can be characterized
by three constant quantities: the probability of default PD;, the exposure at default
EAD; and the loss given default LGD;. Obligor i is subject to default after a fixed
time horizon and the default can be modeled as a Bernoulli random variable D;
such that:

1 with probability PD,

D; =
" |0 with probability 1 — PD,

EAD measures the amount of the facility that is likely to be drawn if a default
occurs and LGD is the proportion of the EAD that will be lost if a default occurs.
To simplify notation, it is possible to define the effective exposure of obligor i by
w; = EAD; x LGD;, then the loss incurred by the obligor i is given by:

Ll' = EAD,’ X LGD,’ X Di = wW; Di

It follows that the portfolio loss is given by:

n n
L=Y Li=) wD
i=1 i=1

Let o be some given confidence level, the «-quantile of the loss distribution of
L in this context is VaR. Thus:

VaR, = inf{x : P(L < x) > «}

Usually the o of interest is close to 1. VaR is the risk measure chosen in the
Basel IT Accord (Basel Committee on Bank Supervision 2005) for the evaluation
of capital requirement, which means that a bank that complies with Basel I needs
to reserve capital of size VaR, as a cushion for extreme losses. However, it is
known that VaR is not coherent and, in particular, not subadditive (see Artzner
et al 1999). So we also consider ES, a coherent alternative to the VaR. It is defined
as the conditional expectation of the loss given that the loss exceeds the VaR:

ES, = E[L | L > VaR,]

A risk contribution measures how much each obligor in a portfolio contributes
to the total risk. This is equally as important as risk measures because it is
necessary for loan pricing and it can provide limits on large credit exposures. A
desirable property of the risk contributions is that they sum up to the correspond-
ing risk measure, for practical purposes such as profitability assessment, economic
capital allocation and portfolio optimization. For example, we want the VaRCs to
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add up to total VaR, ie:

n

> VaRC; = VaR

i=1
A common measure of risk contribution that satisfies this property is the sensi-
tivity of the risk to an infinitesimal fractional change in exposure, as given by
Gourieroux et al (2000). Under some continuity conditions, the VaRC coincides
with the conditional expectation of L; given that the portfolio loss L takes the
value VaR, (L), ie:

dVaR,

VaRC; o = w; (L) =w; E[D; | L = VaRq(L)] (D

1

The sum of the VaRCs is indeed equal to the total VaR, ie:

> wiE[D; | L =VaRa(L)] = E[Z Li|L= VaRa(L)]
i=l1 i=l

= E[L| L = VaRy(L)]

= VaRq (L)
Similarly, the ESC is given by:
dES,
Wi (L) =w; E[D; | L = VaRy (L)] 2)
l
We also have: .
D wiEID; | L > VaRy(L)] = ES4(L) 3)

i=1

We remark that the classical risk measure/contribution starting with Markowitz
(1952) is based on the standard deviation. Although it remains very popular owing
to its computational simplicity, it is less appropriate for credit risk as standard
deviation does not properly characterize the tail behavior in the portfolio loss
distribution. For more discussions on risk measures and risk contributions we refer
the interested reader to Bluhm et al (2002), Denault (2001), Tasche (1999) and
Kalkbrener (2005).

2.2 The Vasicek portfolio credit loss model

The key issue in portfolio credit loss modeling is the modeling of the default
dependence among obligors. It is common practice to utilize the Bernoulli mixture
model, such that D; are independent Bernoulli variables conditional on some
common factors Y with P(D; = 1|Y) = p;(Y). The factors Y can represent the
state of the economy, different industries and geographical regions, etc.

A broad class of models in the portfolio credit loss modeling can be categorized
as Bernoulli mixture models. Examples include all of the popular industrial mod-
els such as KMV/Vasicek (Vasicek 2002), CreditRisk™ (Credit Suisse Financial
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Products 1997) and CreditPortfolioView (Wilson 1997a, b). For more details,
see Frey and McNeil (2002, 2003). We concentrate on the Vasicek one-factor
Gaussian copula model in the following.

The Vasicek model is a one-period default-mode model, ie, loss only occurs
when an obligor defaults in a fixed time horizon. Based on Merton’s firm value
model, the Vasicek model evaluates the default of an obligor in terms of the
evolution of its asset value. Default occurs when the standardized asset log-return
X is less than some pre-specified threshold ¢ where X is normally distributed
and P(X < ¢) = PD. The standardized asset log-return X is decomposed into a
systematic part Y, representing the state of the economy, and an idiosyncratic part
Z, such that for obligor i we have:

Xi=pY +y1-pZ “4)

where Y and all Z; are independent and identically distributed (iid) standard
normal random variables and p is the common pairwise correlation. It is now
easily deduced that X; and X ; are conditionally independent given the realization
of Y. This implies that L; and L; are also conditionally independent given Y.
Further assumptions of the original Vasicek model are that all obligors have the
same characteristics, such that PD; = p, EAD; = 1 and LGD; = 1, which entails
that w; = 1 for all i.

Denote by p(y) = pi(y) =P[L; =1]Y =y], ie, the probability of default
conditional on the common factor ¥ = y. Then:

B B o (o (p)— /oy
p()=P[L;=1]Y = y] =P[X; <c|Y—y1—¢(ﬁ) 5)

where @ is the cumulative distribution function (cdf) of the standard normal
distribution.
As a consequence of the strong law of large numbers, one obtains for n — oo:

P lim L/n=p()|Y=y]=1

Equivalently, if we denote by L(Y) the portfolio loss L conditional on Y, we have:

o~ (p) — /oY
vi=p

Since p(Y) is strictly monotonically decreasing in Y, the o quantile of L is
simply the 1 — o quantile of Y, ie:

nll)n;o LY)/n=pX)= <I>( ) almost surely (6)

(N

1 1
VaRa:np(QDI(l—a)):nq,(‘D (p) + /@ (a)>

v1i=p
As all obligors in the portfolio are equivalent, the VaRC of each obligor is simply
VaR/n = p(®~'(1 — ).

We note that although the assumptions of uniform pairwise correlation p and
unconditional default probability PD are made in Vasicek (2002), they are not
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necessary conditions and can be relaxed. Moreover, the convergence in (6) also
holds for a portfolio with unequal weights w; if:

T

Q- wi)?
in other words, the portfolio exposure is not concentrated on a few loans that
are much larger than the rest. The left-hand side of formula (8) is known as
the Herfindahl-Hirschman index (HHI); see, eg, Hirschmann (1964) and Gordy
(2003). It provides a simple heuristic approach for quantifying exposure concen-
tration. Well-diversified portfolios with a very large number of very small obligors
have a HHI value close to 1/n, where n is the number of obligors, whereas heavily
concentrated portfolios can have a considerably higher HHI value.

Throughout this paper, the Vasicek model should be considered as a one-
factor Gaussian copula model that allows heterogeneous portfolios rather than
the restrictive original model for homogeneous portfolios. Summarizing, for
a portfolio which is not homogeneous in terms of effective weight, default
probability and pairwise correlation, the individual loss variable L; conditional
on Y is given by:

0 ®)

>~ Y(pi) — /oY
w; with probability <I>< (jll)_\/p_l )
Li(Y) = &

O (p) — /oY
0 with probabilityl—@( (Pi) = /P )
V1—=pi

If (8) is satisfied, the fraction of loss L(Y) is given by:

S LiY) Y wi (@ (p) — AV /T i)

LY)= li =
)= lim Y, EAD; S EAD;
Then, the VaR and VaRCs are given by:
n <D_1 . ,(D—l
VaRa:ZwiQD( (pi) + /i (O‘)) ©)
i=1 V1I=pi

(10)

=1/, ~H—1
VARG, — uy (D(<b (i) + /Pi® (a))

VI=pi
Note that the VaRC (10) is a portfolio-invariant linear function of w;, which
implies that the capital contributions of individual exposures only depend on the
characteristics of the particular exposure and not on the rest of the portfolio.

The Vasicek asymptotic formula is straightforward, but is heavily reliant on
the assumptions of an infinitely large portfolio and of no exposure concentration.
When the two conditions, especially the latter, are violated, which constantly
occurs in practice, it tends to underestimate risk. Therefore, the analytic formulas
are less suitable when a portfolio is of small size or dominated by a few loans
much larger than the rest. In the following sections we show that both problems
can be handled by the saddlepoint approximation.
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3 SADDLEPOINT APPROXIMATION

The computation of the probability distribution function of the sum of independent
random variables can be facilitated by the use of the MGF, which is defined by
Mx (t) = E(e'*). For a finite sequence of independent random variables X;, i =
1...n, with known analytic MGFs My,, the MGF of the sum X =) 7 | X; is
the product of MGF of X;, ie:

Mx(0) =] ] Mx, @)
i=l

Let Kx(t) =log Mx(t) be the cumulant generating function (CGF) of X. The
inverse MGF of X can be written as:
1 +ioo
f0 =5 [ explkn — e ar (1
2mi —ioco
Saddlepoint approximation arises in this setting to give an accurate analytic
approximation. A detailed exposition of saddlepoint approximations can be found
in Jensen (1995). The saddlepoint approximation can be thought of as the
Edgeworth expansion at the center of an Esscher transformed density. Only using
the approximation at the center of the distribution, the saddlepoint approximation
usually leads to a small relative error.
The saddle point, ie, the point at which K x (t) — tx is stationary, is a t = f such
that:
Ky (i) =x (12)

The density fx(x) and the tail probability P(X > x) can be approximated by
K x (1) and its derivative up to second order at 7.
The Taylor expansion of K () — tx (function of ¢) around 7 gives:

K@) —tx =K@ —ix+ 1 —D*K"(@) +- - (13)
Substitute (13) into (11), we get:

exp(K (f) — fx) [Ti® _exp(K (i) — ix)

1 . .
fx(x) ~ exp(—(t - t)zK”(t)) dr = .
2mi —ico 2 V2 K" (f)
(14)
The tail probability is approximated as:
1 [t K@) —t
P(X>x):—_/ exp(R(®) 19 4,
2mi —ioco,(0+) t
exp(K () — ix + 312 K" (7)) ®(—/12K" (7)) x> E(X)
~ 11 x = E(X)
1 —exp(K (f) — fx + 372K" () @(—/72K" (D)) x < E(X)
(15)
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If all of the X; are identically distributed, the relative errors of both approxi-
mations in (14) and (15) are known to be O (n™!). Higher-order approximations
of the density and the tail probability are given by the Daniels (1987) formula:

e SK(? | KO .
Jxte = K—(t)<{1 " [_24K"<f>3 " 8K"<f)2“ o )) (1o

with ¢ the probability density function (pdf) of the standard normal distribution
and the Lugannani—Rice (Lugannani and Rice 1980) formula:

PX>x)=1—®(z) + </)(zl)[i 1 + 0(n3/2)] (17)

Zw 2l

where z,, = £/ K" (f) and z; = sgn(f)/2[xf — K (7)].

4 SADDLEPOINT APPROXIMATION IN PORTFOLIO CREDIT RISK
MODELING

The saddlepoint approximation method is well known to provide good approxi-
mations to very small tail probabilities, which makes it a very suitable technique
in the context of portfolio credit loss. The use of saddlepoint approximation in
portfolio credit loss was pioneered in a series of articles by Martin et al (2001a, b).
Gordy (2002) showed that saddlepoint approximation is fast and robust when
applied to CreditRisk™. All of these approaches apply saddlepoint approximation
to the unconditional MGF of loss L, despite the fact that L; are not independent.
Annaert et al (2006) showed that the procedure described by Gordy (2002) may
give inaccurate results in the case of portfolios with high skewness and kurtosis
in exposure size. This paper differs substantially from the cited literature in that
we apply the saddlepoint approximation to the conditional MGF of L given the
common factor Y, so that L(Y) = ) w; D;(Y) is a weighted sum of independent
Bernoulli random variables, which is exactly the situation where the saddlepoint
approximation will work well. In Section 5 we show (by a numerical example)
that the accuracy of our procedure is not impaired by high skewness and kurtosis
in exposure size.

Given that obligors are independent conditional on the common factor, the
application of the saddlepoint approximation is straightforward. We write the
conditional MGF of L as:

Mz, Y):l_[(l_Pi(Y)+Pi(Y) e’ (18)
i=1

where in the Vasicek model:

cb”(;»)—ﬁY)
L(Y)=d 19
pi(Y) ( T (19)
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The conditional CGF and its derivatives up to fourth order are defined as follows:

K@, Y) =7 log(l - p;(Y) + pi(¥) ") (20)
i=1
, . w; pi (Y) e!
= 21
K@= 1—pi(Y) + pi(Y)e! @D

i=1

n — D 2 . w;t
K. Y):Z (I = pi¥)w;pi(Y)e 22)

(1= pi(Y) + pi(Y) ei']?

i=1

o (L= g W)wipi (V) et 2(1 = pi (V) w}pR(¥) !
K" 1) =) (1 —pi(Y)+ pi(Y)ew' 2 [1— pi(Y)+ pi(Y)ewil]? }
(23)

o[ U= pOwip@ e’ ol = piwpi() e
S = p) +pi e P 1= pi() + pi(¥) em'P

6(1 - pl(Y))w;‘pl?’(Y) e3w,-t}
[1 = pi(Y) + pi(Y) evit]*

With K (¢, Y) available, we are able to calculate the conditional loss density
and the conditional tail probability by the saddlepoint approximation. Since
K’(t, Y) is a monotonically increasing function of ¢ and it is bounded in the
interval [0, Y w;], the equation K'(z, Y) =x admits a unique solution 7 for
x €[0, Y w;]. Integrating over Y gives the unconditional loss density and tail
probability. For example, the tail probability is given by:

i=1

K®@t, y) =

(24)

P(L> x) = / P(L > x| Y)dP(Y) (25)

The VaR can then be found by inverting the loss distribution. Moreover, to obtain
the VaRC, we differentiate P(L > x) with respect to the effective exposure:

a

P(L > x)
i
1 e 10Kt Y)  ox
=Ey|-— - = exp(K (¢, Y) — tx) dt (26)
2mwi —ioo,(0+) L f ow; ow;

Here we replace x by VaR,. Since the tail probability P(L > VaRy) is fixed at
1 — «, the left-hand side should vanish and we obtain:

OVaR,  Ev[[Tix 04y (0K (1. Y)/0w:)(1/1) exp(K (1. ¥) — rVaRy) di]
wj; = w; p
dw; Ey[ [T exp(K (1, Y) — tVaRy) dt]

—i0co

" Ey[[H2(pi(Y) ¥/l — pi(Y) + pi(Y) e¥i") exp(K (1, ¥) — tVaRy) di]
’ Eyl[fL(VaRy | Y)]

27)
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If we define:
K, Y) =log(pi(Y) ") + ) log(l — p;(Y) + p;(¥)e"i")
J#i

which can be thought of as the CGF of L given Y and D; = 1, Equation (27) is
rewritten as:

0VaR,  Ev[[7°exp(Ri(1, Y) — rVaRy) dr]
W — w:

l l Ey[fL(VaRy | Y)]

Both the numerator and the denominator can be approximated by the saddlepoint
method.

The VaRC can also be derived in another way. With L = > ji WD, we
have:

dw; (28)

f(L=VaRy; D; = 1)
fL(VaRy)
_  EYU (LT =VaRy —wi | V)pi(1)]
Ey[fL(VaRy | Y)]
The conditional density in the numerator is the conditional loss density of a
portfolio excluding obligor i and can again be calculated by the saddlepoint

approximation. We note that (28) and (29) are essentially the same because both
formulas use the saddlepoint 7 that solves:

(Y w;t
3 wipj¥)e _ = VaR, — w; (30)
21— py(0) + py(0) e

Similarly, the ESCs are given by:

u)iE(D,- | L =V3.Ra) = w;

(29)

Ey[P(L' = VaRy — wi | ¥)pi(Y)]

E(D; | L>VaRy) = 31
w; E(D; | L > VaRy) = w; Ey[P(L > VaRy|Y)] (3D

and ES can be obtained by simply summing up all of the ESCs, ie:
ESy = Z w; E(D; | L > VaRy,) (32)

REMARKS

¢ Although the obligors in a portfolio are assumed to be completely hetero-
geneous, for the sake of computational efficiency it is advisable to group
obligors as much as possible into homogeneous buckets with similar char-
acteristics, especially for large portfolios. The main advantages of doing this
are (i) the expedition of the calculation of conditional CGF and its partial
derivatives and (ii) a reduction in the number of risk contributions that need
to be computed.

e Martin et al (2001b) proposed a simple estimate to the VaRC, which reads:

Ey[fL(VaRy | Y)(wi/D QK (¢, Y)/0w),—7]
Ey[fL(VaRq [ Y)]

in the Bernoulli mixture models. In our numerical examples we show,
however, that this approximation may be inaccurate.

VaRCi,a ~

(33)
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5 NUMERICAL RESULTS
5.1 The Vasicek one-factor model

We now illustrate the performance of the saddlepoint approximation in the Vasicek
one-factor model. For the implementation of the saddlepoint approximation, we
always employ the Lugannani—Rice formula (17) for the tail probability. We
truncate the common factor Y in the interval [—5, 5] so that the probability of
Y falling out of this interval is merely 5.7 x 10~". Discretization of Y is done
by Gauss—Legendre quadrature, generating 1,000 abscissas and weights. The four
examples evaluated are as follows.

e Example 1. A homogeneous portfolio with n = 1,000 obligors, each with
EAD=1, LGD=1, PD=0.01and p =0.2.

e Example 2. A portfolio consisting of n = 100 obligors with EAD; =1,
i=1,2,...,100,PD=0.1, p =0.2.

e Example 3. A portfolio consisting of one obligor with EAD{ = 100 and
10,000 obligors with EAD; = 1. All obligors have PD = 0.005 and p = 0.2.

* Example 4. This portfolio is taken from Glasserman (2006). All 100 obligors
have PD = 0.01 and p = 0.5. The exposures are:

1, i=1,...,20
4, i=21,...,40

wi =439, i=41,...,60
16, i=61,...,80
25, i=81,...,100

The HHI values for the four portfolios are as follows:

Example
1 2 3 4
HHI 0.001 0.0133 0.0002 0.0162
0.001 0.01 0.0001  0.01

with 1/n being the HHI value in the case of no exposure concentration.

We compare the loss distribution from the saddlepoint approximation to results
from the analytic Vasicek formula and from Monte Carlo simulation in the first
two examples. Our benchmark is the sample mean and the accompanying 95%
confidence intervals obtained from 10 subsamples of Monte Carlo simulation with
4 million replications. The loss distribution corresponding to the Vasicek model
is obtained by inverting the VaR given by Vasicek’s formula (9) for a series of
quantile o.

Example 1 is an ideal case for the Vasicek formula (9) to be accurate. The
loss distributions from different methods are presented in Figure 1(a). The x-
axis represents the loss percentage, ie, the loss amount in proportion to the
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total exposure. The y-axis, the tail probability P(L > x), is in log-scale. It can
be seen that both the Vasicek formula and the saddlepoint approximation follow
our benchmark very well.

In Example 2, Vasicek’s formula significantly underestimates the risk, as is
demonstrated in Figure 1(b). This implies the presence of exposure concentration
in the portfolio. We observe, however, that the saddlepoint approximation gives
results comparable with simulation in this example.

We show more details of the errors made by the saddlepoint approximation
for Examples 1 and 2 in Figure 2. Concentrating on the loss percentages from
15% to 25%, which roughly corresponds to quantiles from 99.9% to 99.99%
for both examples, we report relative errors compared with the sample means
of the 10 subsample estimates. The normalized standard deviations of Monte
Carlo simulation with 4 million replications are also provided for comparison.
We find that in the tail of the distribution, the relative errors of the saddlepoint
approximation are typically smaller than the standard deviations. Furthermore, we
see that as loss level increases the standard deviation of Monte Carlo simulation
increases significantly, whereas the accuracy of the saddlepoint approximation
seems unaffected. This is highly desirable because the tail of the distribution is
the center of interest.

Example 3 is a particular test case for which the VaR and VaRCs can
be computed almost exactly by the binomial expansion method (BEM) if we treat
the portfolio loss as a discrete variable. It is therefore a suitable test portfolio
for the calculation of VaRCs. BEM will serve as the benchmark for both the
VaR and the VaRCs. More details on BEM can be found in Appendix A.
The loss distributions of this portfolio given by the saddlepoint approximation and
the BEM are shown in Figure 3. The saddlepoint approximations again follow our
benchmark very well.

As for the VaRC, we first consider a fixed loss level L =922, which lies
around the 99.9% quantile. We compute the VaRCs of both the large obligor
(VaRCj) and any small obligor (VaRC;). We use both the standard and higher-
order saddlepoint approximation given by (14) and (16), respectively (denoted
by SA2 and SA4). Results are shown in Table 1 and the relative errors of
the saddlepoint approximation to the benchmark are shown in parentheses. In
addition, we compute the Vasicek VaRC, the saddlepoint approximation for the
VaRC as given by (33) (denoted by SA-Martin) for comparison.

The results given by the benchmark BEM show that the VaRC increases
non-linearly with the size of the exposure. Both the standard and higher-order
saddlepoint methods successfully capture this feature and give the VaRCs with
small relative errors. The higher-order approximation, with relative error less than
1%, outperforms the standard approximation. The only (negligible) problem is
that the VaRCs do not add up to the total VaR exactly. It is also clear that the
VaRCs of the large obligor (VaRC]) obtained from Vasicek and SA-Martin are
both relatively far from the true value. The Vasicek contribution is proportional
to the effective exposure and therefore it underestimates the large obligor’s risk
contribution. SA-Martin penalizes large exposure too much.
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FIGURE 1 Comparison of the Saddlepoint approximation, Vasicek's formula and
Monte Carlo simulation for the loss distribution in (a) Example 1 and (b) Exam-
ple 2. The Monte Carlo 95% confidence interval (Cl) is constructed using 10
subsamples of 4 million replications each.
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Next we consider a fixed confidence level o« = 99.99% in Example 3, which
is truly far in the tail. The Lugannani—Rice formula is used to compute the loss
distribution and the ESCs. The higher-order saddlepoint approximation is used
for the VaRCs. Results are shown in Table 2. The accuracy of the saddlepoint
approximation is highly satisfactory for all estimates of VaRCs, ESCs and ES.
The table suggests that the approximation is slightly more accurate for the VaRC
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FIGURE 2 Comparison of the normalized standard deviations of Monte Carlo
simulation with 4 million replications and relative errors of the saddlepoint
approximations: (a) Example 1 and (b) Example 2.
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than for the ESC. This can be understood roughly because the relative error of the
Daniels formula is O (n~2) and that of the Lugannani—Rice formula is O(n=3%,
with n being the number of iid random variables (although in our example L; are
not really identically distributed).
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FIGURE 3 Tail probability given by the saddlepoint approximation and the BEM
for the portfolio in Example 3.
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TABLE 1 VaRCs at the loss level L = 922. The relative errors of the saddlepoint
approximation to the benchmark are shown in parentheses. The portfolio is given
in Example 3.

VaRCy VaR(, Y- VaRC
BEM 12.61 0.0909 921.95
Vasicek 9.13 0.0913 922
SA-Martin~ 21.82 0.0900 921.99
SA2 12.24(2.93%) 0.0904(0.55%) 916.64(0.58%)
SA4 12.65(0.32%) 0.0907 (0.22%) 920.00(0.21%)

TABLE 2 VaRCs and ESCs at the loss level VaRgg g9¢,. The relative errors of the
saddlepoint approximation to the benchmark are shown in parentheses. The
portfolio is given in Example 3.

VaRgg 99, VaR(Cy VaRC, Z VaRC ESCy ESC, ES
BEM 1558 19.79  0.1538 1557.87 23.14 0.1839  1862.51
SA 1558 19.71 0.1537 1556.27  23.18 0.1848 1871

(0.4%) (0.06%) (0.1%) (0.17%) (0.49%) (0.46%)

We remark that in Example 3 the skewness and kurtosis in exposure size are
99.985 and 9,998, respectively. They are much higher than in portfolios 4 and 5
given in Annaert et al (2006), where it is shown that the accuracy and reliability
of the saddlepoint approximation obtained from Gordy’s (2002) procedure may
deteriorate. In our approach, high skewness and kurtosis do not pose any problem
with respect to accuracy.

For the portfolio in Example 4 we report the expected shortfall contributions
at the loss level L = 100. In Glasserman (2006) both VaRC and ESC estimates
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TABLE 3 Comparison of importance sampling (IS) and saddlepoint approximation
(SA) for expected shortfall contributions in Example 4 at the loss level x = 100.

Obligors
1-20 21-40 4160 61-80 81-100

IS 0.10 0.42 1.02 2.03 3.67
SA  0.1017 0.4254 1.0327 2.0453 3.6835

from importance sampling are provided. We opt for the latter since the ESC
estimates based on simulation are supposedly more accurate and robust: they are
conditioned on a relatively less rare event, {L > 100} compared with {L = 100}
for VaRCs. The results are illustrated in Table 3. Those estimates from importance
sampling, using as many as 250,000 replications, are taken from (Glasserman
2006, Table 2) and seen as our benchmark. We observe only marginal differences
between ESCs given by the saddlepoint approximation and the benchmark.

It is also interesting to explore the efficiency of the two methods as both
appropriately accommodate exposure concentration. Note that both saddlepoint
approximation and importance sampling with exponential twisting involves find-
ing the saddlepoint as a solution to (12) for each realization of the common
factor. With the saddlepoint at hand, saddlepoint approximation can be obtained
analytically, while importance sampling needs to simulate idiosyncratic risks
for all obligors in the portfolio. It is more likely than not that the saddlepoint
approximation is faster than importance sampling, especially for portfolios with
a large number of obligors. In addition, we generally find a draw of 100-1,000
common factors based on the Gauss—Legendre quadrature is sufficient in a one-
factor model in terms of accuracy for the saddlepoint approximation, while for
importance sampling many more points are necessary to obtain an estimate with
small variance, particularly for estimation of the VaRCs. The advantage of impor-
tance sampling is that it can compute tail probabilities for a series of loss levels
with one set of generated scenarios (see Glasserman and Li 2005). For saddlepoint
approximation different saddlepoints need to be found for different loss levels.
A final remark is that in all four examples the saddlepoint approximation is able
to find the portfolio VaR in less than five seconds on a Pentium 4 2.8 GHz desktop.

5.2 Multi-factor model

We further present an Example 5 under a Gaussian multi-factor model, taken from
Glasserman and Li (2005). It is a 21-factor model with n = 1,000 heterogeneous
obligors. The exposures w; increase linearly from 1 to 100 as i increases from 1
to 1,000. PDs have the following form:

PD; =0.01 x (1 +sin(16zi/n)), i=1,...,n
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The matrix of factor loading, A = (a;;, i =1,...,1,000, j=1,...,21), has
the following block structure:
F G g
F |G g

with: R a column vector of 1,000 entries, all equal to 0.8; F a column vector of
100 entries, all equal to 0.4; G a 100 x 10 matrix; and g a column vector of 10
entries, all equal to 0.8.

In a multi-factor model with more than three factors, instead of Gauss quadra-
ture, Monte Carlo simulation or low-discrepancy sequences can be employed for
the integration. The saddlepoint approximation itself, however, is unaffected, since
all of the information of the common factors is encapsulated in p;(Y) before
starting the approximation procedure. We note that when x is large and Y is large
and positive, P(L > x | Y) will tend to zero and thus the integration in (25) will not
be efficient. It is a natural idea to resort to importance sampling for a significant
improvement in such cases. By choosing a P-equivalent probability measure Q,
the tail probability can be rewritten as:
dP(Y)
dQ(Y)

Several procedures to find the optimal measure Q have been suggested by
Glasserman and Li (2005) and Glasserman (2006).

A hybrid method of saddlepoint approximation and importance sampling is
more efficient than pure importance sampling, since in the simulation only the
common factors need to be generated and not the idiosyncratic risks. This is
more advantageous for large portfolios. Moreover, for the calculation of the VaRC
importance sampling can only use the few replications L = x, whereas the hybrid
method need not condition on this rare event.

We employ the hybrid method for Example 5. It is carried out as follows.
Taking the same mean shift in the common factors as in Glasserman and Li
(2005), ie, 2.46 for the first factor and 0.2 for the other components, we generate
10 subsamples of simulation with 1,000 replications each. The saddlepoint
approximation is employed to compute the tail probability conditional on each
realization of the common factors. Afterwards the conditional tail probabilities
are aggregated with proper likelihood ratios. Table 4 shows the resulting tail
probabilities and their standard deviations for five loss levels from 10,000 to
30,000, with reference to those point estimates reported in Glasserman and Li
(2005), which are based on pure importance sampling. Differences between the
two methods appear to be immaterial. In addition, we produce a column of
standard deviations of pure importance sampling with 10 x 1,000 replications
alongside the point estimates. It can immediately be seen that the hybrid method
yields smaller standard deviations. The larger variance associated to the pure
importance sampling method can be attributed to variations in the idiosyncratic
risks.

P(L>x):/IP(L>x|Y)dP(Y):/IP>(L>x|Y) dQ(Y)
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TABLE 4 Comparison of importance sampling (IS) and the hybrid method for
point estimates and standard deviations of tail probability P(L > x) at various
loss levels. The portfolio is given in Example 5.

x IS Standard deviation  Hybrid  Standard deviation

10,000 0.0114 8.17 x 10™4 0.01139 4,55 x 1074
14,000 0.0065 3.85 x 1074 0.00641 3.41x 1074
18,000 0.0037 2.57 x 1074 0.00367 1.49 x 1074
22,000 0.0021 1.89 x 1074 0.00210 812 x 107>
30,000 0.0006 6.53 x 107> 0.00063 4.81 x 107>

6 FURTHER EXTENSIONS

Although we confine our numerical experiments to the Gaussian factor models in
previous section, the saddlepoint approximation technique can be readily applied
to all Bernoulli mixture models with common factors that follow any distribution.
Recall that in our approach the distribution of portfolio loss L is obtained by
integrating the conditional distribution of L(Y) and the saddlepoint approximation
only deals with L(Y). A different choice of mixture model gives a difference in
the form of the conditional default probability p;(Y), eg, in the Vasicek one-factor
model p;(Y) is given by (19) and in CreditRisk™:

pi(Y)=pi (in +) kaik>

where Y are assumed to be independently gamma distributed (see Gordy 2002).
However, then the conditional portfolio loss L(Y) =Y w; D;(Y) reduces to a
weighted sum of independent Bernoulli random variables, whose MGF always
exists. As the main requirement of calculating a saddlepoint approximation is the
existence of a MGF, the saddlepoint approximation is applicable in any Bernoulli
mixture model.

Furthermore the saddlepoint approximation can also handle LGD volatility.
‘When the LGD, which was assumed to be constant, becomes a random variable,
the conditional CGF reads:

K(t,Y)= Z log[1 — pi(Y) + pi(Y)E (""" | )] (34)

Various forms of distribution of LGD can be found in the literature. For example,
in Frye’s (2000) model, the LGD is modeled as a normal random variable with
mean u and standard deviation o such that:

LGD; = p + o (=b;Y +,/1 — b?e;)

Here the ¢;, independent of Y, are assumed to be iid standard normal variables and
the b; are assumed to be positive to insure the correct qualitative effect of LGD,
which is mostly determined by the value of collateral. It should tend to be higher
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when the economy is weak and lower when the economy is strong. It follows that:

o /1—b2e
E(ew,'l|Y) — eEAD,’ (u—ob; Y)IE(eEADI 1 b, elt)
= exp(EAD; (1 — ob;Y)t + EAD?o(1 — bH1?/2)  (35)

After substitution of (35) into (34), we see that a random LGD will not complicate
the problem further.

7 CONCLUSIONS

We have described a new procedure to embed the saddlepoint approximation
as a useful tool in portfolio credit loss modeling. We apply the saddlepoint
approximation in the Vasicek one-factor model. The saddlepoint approximations,
especially the higher-order approximations, are able to produce accurate results on
both the VaR and the VaRC. The ES and ESC can also be computed satisfactorily.
We have also illustrated that the saddlepoint approximation works well for small
portfolios and portfolios with exposure concentration, where Vasicek’s asymptotic
formulas fail. We further point out that the saddlepoint approximation is a flexible
method that can be applied in quite general situations, for example, in other
Bernoulli mixture (possibly multi-factor) models and portfolios with random
LGD.

APPENDIX A BINOMIAL EXPANSION METHOD

The BEM is similar to the recursive method proposed by Andersen et al (2003)
in the sense that both methods treat the portfolio loss as a discrete variable. The
former method is tailor-made for the portfolio in Example 3 we considered in
Section 4, while the latter method can be applied to more general portfolios. An
evaluation of the recursive method can be found in Glasserman and Ruiz-Mata
(20006).

Consider a portfolio consisting of one obligor with EAD; =k, PD = p; and
n obligors with EAD, = 1, PD = p». In a Bernoulli mixture model, the losses of
the obligors are conditionally independent given the common factor Y. Let p1(Y)
and p(Y) be the conditional default probabilities, we have:

P(L=m)=/IP(L=m|Y)dIP>(Y)
Z/Pl(Y)P(anm—klY)+(1—P1(Y))P(L"=m|Y)dP(Y)

where:
n
P(L"=m|Y)= (m>(P2(Y))m(1 — p2(Y))" "

The VaR and VaRCs are then given, respectively, by:

i P(L =m) Zoz}
m=0
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and:
_ f p1(YP(L" =VaR, — k| Y) dP(Y)

VaRC, =
o P(L = VaRy)

1

VaRCr= —
B2 =B =var,)

X :/ P2 pi(NPL" = VaRy —k — 1Y) dP(Y)

+/ p2(Y)(1 = pr(Y)P(L" " = VaR, — 1Y) dIP’(Y)}

The ESCs are computed according to (31) with:

x—1
P(L=x)=1-) P(L=m)

m=0

and ES is obtained by (32).
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